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In contemporary database applications, the demand for memory resources is intensively high. To enhance

adaptability to varying resource needs and improve cost efficiency, the integration of diverse storage tech-

nologies within heterogeneous memory architectures emerges as a promising solution. Despite the potential

advantages, there exists a significant gap in research related to the security of data within these complex

systems. This paper endeavors to fill this void by exploring the intricacies and challenges of ensuring data

security in object-oriented heterogeneous memory systems. We introduce the concept of Unified Encrypted

Memory (UEM) management, a novel approach that provides unified object references essential for data man-

agement platforms, while simultaneously concealing the complexities of physical scheduling from developers.

At the heart of UEM lies the seamless and efficient integration of data encryption techniques, which are

designed to ensure data integrity and guarantee the freshness of data upon access. Our research meticulously

examines the security deficiencies present in existing heterogeneous memory system designs. By advancing

centralized security enforcement strategies, we aim to achieve efficient object-centric data protection. Through

extensive evaluations conducted across a variety of memory configurations and tasks, our findings highlight

the effectiveness of UEM. The security features of UEM introduce low and acceptable overheads, and UEM
outperforms conventional security measures in terms of speed and space efficiency.
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1 INTRODUCTION
As the volume of data continues to grow, it is no longer cost-effective for data management

systems to support memory-intensive workloads efficiently. Instead, in recent years, a wide range

of heterogeneous memory architectures, designed to suit specific scenarios and optimization goals,

have been introduced and widely integrated into the development of data management systems [26,

52, 75, 78, 92]. Such systems integrate a variety of storage modalities to form a large-scale memory

system to support memory access operations during program execution in a transparent manner.

They are manifested in a variety of ways, e.g., remote memory [2, 5, 19, 31, 32], disaggregated

memory [30, 35, 51, 58, 87], and non-volatile memory [46], with each specific approach offering its

own unique advantages. In general, these systems aim to address the balance between performance

and cost that arises from the distinct physical characteristics of various storage tiers. Moreover,

heterogeneous memory systems enhance flexibility in resource allocation, optimize utilization, and

consequently, mitigate costs.
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Fig. 1. An example of shared memory pool expanding attack surface in heterogeneous memory architectures.

While there has been extensive research on empowering heterogeneous memory architectures

for data processing [50, 53, 107, 110], the focus has largely been on performance, applicability, fault

tolerance, and availability. Surprisingly, to our knowledge, there is no reported work that looks at

safeguarding the data. In particular, these novel memory architectures introduce additional chal-

lenges in safeguarding data. For instance, consider a shared memory pool built on networks [56], as

depicted in Fig. 1. Data reliability is inherently lower than in traditional schemes due to the presence

of networks and remote servers, which are physically more challenging to control. Attackers or

even corrupt administrators of these facilities can pose a greater threat than before, thus expanding

the attack surface. Moreover, with dynamic resource allocation typical in heterogeneous memory

systems, e.g., clouds or other shared hardware scenarios, multi-tenancy [96] exacerbates threat

complexity and diversifies attack vectors. Malicious tenants might exploit vulnerabilities [38] and

breach isolation to access or tamper with others’ data. We seek to bridge such a gap in this paper.

Motivation. Prior research studies on traditional memory security fall short in effectively address-

ing the challenges associated with developing a data management platform based on heterogeneous

memory architectures. This situation demands a more precise delineation of the domain-specific

characteristics of these challenges, thereby emphasizing a robust and clear motivation for investi-

gating innovative and effective technical solutions.

First, in heterogeneous memory architectures, consideration of asymmetric security is imperative

due to significant variations in security attributes (e.g., exclusive vs. shared), safeguards (e.g., local

vs. remote), or the intrinsic properties (e.g., volatile vs. non-volatile) of different memory tiers.

This results in the emergence of intricate and unique attack vectors, which are unlike the security

challenges in homogeneous memory environments that generally operate on consistent, uniform

assumptions about benign hypotheses or the capabilities of adversaries. In contrast, the asymmetric

nature of heterogeneous architectures implies that the overall security is only as strong as its weakest
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tier—a compromise in a single tier could jeopardize the robustness of the entire system. Therefore,

it is essential to have a deep understanding and effective incorporation of this characteristic to

enhance data security during interactions among tiers with disparate levels of security strength.

Second, effectively deploying proactive security solutions is challenging, especially in the context

of methodologies based on specific benign conditions. This is because the subordinate memory

tier within a heterogeneous memory framework often lacks the capacity to maintain any security

assumptions. It is difficult to both reliably ascertain its activation and discern when a failure

occurs. Thus, in these cases, it becomes imperative to consider the most pessimistic hypothesis:

the application operates on a heterogeneous memory tier that is entirely compromised. Under

such conditions, adversaries may have unrestrained and silent access to read or alter the managed

memory data within this layer. This situation necessitates the implementation of robust passive

security strategies, including encryption and verification mechanisms, to safeguard the applications’

memory, even in such critical scenarios.

Third, most of the existing memory security mechanisms are efficient only with page-based

memory management. While these coarse-grained page-swapping methods [5, 35] simplify memory

allocation and replacement complexities compared to fine-grained management [24, 25, 71, 81],

they have significant drawbacks for applications with memory access patterns that lack locality

or exhibit global randomness. These drawbacks include notable latency fluctuations and I/O am-

plification [1, 17] upon page misses. Given that the interconnection bandwidth between memory

hierarchies is often the bottleneck in memory-intensive applications [15], this can substantially

impact performance. In these scenarios, fine-grained object-based schemes can be a complementary

choice, offering superior performance [68, 81, 89], especially for a significant portion of typical data

management tasks, such as table joins [11], key-value queries [89], and graph processing [100, 108].

However, achieving robust passive measures for pessimistic scenarios on fine-grained objects is

not straightforward. This is because most data security techniques operate on larger data blocks to

efficiently amortize the incurred overhead [37]. For example, to ensure the three primary properties

of data security—confidentiality, integrity, and freshness—at least three types of metadata are

required with traditional approaches: nonces, digests, and timestamps. Further, the corresponding

algorithms involve initial computation costs unrelated to data block sizes. For fixed and sufficiently

large pages, this may be acceptable. However, if such metadata is at the object level, e.g., a few

bytes in length, the extra space overhead would be several times the effective data payload, clearly

contradicting the primary goal of heterogeneous memory systems—spatial efficiency.

Our proposal. In this paper, we delve into object-oriented heterogeneous memory architectures,

initiating the exploration of their data security challenges. We propose the object-oriented Unified
Encrypted Memory (UEM) management for heterogeneous memory architectures. Specifically,

UEM is developed in C++ and exposes unified object references, allowing developers to effortlessly

build data management platforms upon heterogeneous memory architectures. They can focus

on data operational logic without becoming entangled in the nuances of memory management.

Interactions between UEM and specific memory devices occur via a unified interface, ensuring that

UEM is not tied to any specific hardware, exhibiting impressive scalability. As for data security,

when objects are written back to the heterogeneous memory tiers through unified references,

their data is encrypted. Similarly, during reads, UEM checks for data integrity and freshness at

dereference, returning the decrypted original content. This entire security enforcement process

remains transparent to developers. Central to our proposal is the way in which UEM provides

cost-effective data security measures rooted in its design philosophy. Instead of viewing objects in

isolation and managing security metadata independently, UEM employs centralized data structures.
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These designs holistically ensure the security properties of all objects, thereby reducing storage

overhead and processing latency more effectively than traditional methods.

Novelty.Ourwork identifies and addresses a critical yet overlooked issue in standard heterogeneous
memory scenarios: the inconsistency in security assurance across memory hierarchies. As memory

paradigms within data management platforms evolve, bridging this security gap becomes crucial.

This paper pioneers efforts to resolve this discrepancy, proposing a forward-thinking approach to

imposing security attributes at the object level within heterogeneous memory. Traditional solutions

falter at this granularity due to excessive overheads in runtime and storage. To address these

challenges, we introduce an innovative, centralized security strategy for effective and lightweight

execution, applicable across standard heterogeneous memory models, irrespective of specific

hardware, architectures, or implementations.

The contributions of this paper are summarized as follows.

• We identify a lack of attention to data security in existing work in the field of heterogeneous

memory architectures. In response, we propose UEM, a unified object access for developers

working within heterogeneous memory architectures, which ensures that data security attributes

are maintained. To the best of our knowledge, this is the first work of its kind.

• To address the challenges of fine-grained data security, we propose innovative strategies for

object-level data assurance and incorporate them into UEM. These encompass the Aggregated
Verification Set (AVS) and the Dynamic Mask Pool (DMP), which are centralized data structures,

making data security enforcement lightweight in heterogeneous memory architectures.

• To validate UEM’s efficacy across varied heterogeneous memory environments and typical data

management computational workloads, we conduct an extensive experimental evaluation. Our

experimental setup spans three leading-edge heterogeneous memory architectures: network-

based disaggregated memory, non-volatile memory, and trusted execution environments; and

three distinct workload types: tabular, key-value, and graph.

• The experiments demonstrate that UEM introduces reasonable overhead, ranging from 0.7% to

57.5%, depending on the varying hardware, compared to the state-of-the-art approaches that

do not prioritize data security. Moreover, when evaluated against conventional data security

methods, UEM exhibits exceptional lightweight characteristics, delivering a performance 1.8x -

6.3x faster and significantly reducing additional space consumption.

2 PRELIMINARIES AND RELATED STUDIES
2.1 Heterogeneous Memory Architectures
Heterogeneous memory, crucial in modern high-performance and efficient computing, integrates

multiple storage types within a single system, tailored for various workloads and requirements.

Disaggregated Memory. In this paradigm [29, 64], computation and storage are decoupled and

connected via a network, allowing remote memory resources to function as local. This architecture

enhances resource sharing and scalability. Essential to its success is robust connectivity, with

Ethernet excelling in cost-effectiveness and compatibility, among which the Transmission Control

Protocol [46, 81] (TCP) is a key communication protocol. Techniques such as InfiniBand [35, 58],

which is significant for Remote Direct Memory Access [16, 43] (RDMA), and Compute Express

Link [34, 56, 65] (CXL), a new technology with cache coherence, are also integral.

Multi-type Memory Hybrid. This concept combines various memory types, each optimized

for specific roles or data types. High Bandwidth Memory [75] (HBM), for instance, offers high

bandwidth but poses challenges in manufacturing complexity and scalability [42]. Non-Volatile
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Random-Access Memory [3, 33, 52, 79, 97, 98] (NVRAM), including NAND [44] and 3D XPoint [36],

presents higher capacity but with slower access and shorter lifespans [74]. In a broader context, this

category also includes CPU caches utilizing SRAM [77] and memory page swapping on disks [95].

Dedicated Memory Region. Even in systems with a singular physical storage type, memory

is partitioned into regions, each satisfying specific needs like stability, performance, or security.

For example, real-time embedded systems [59] may use dedicated regions for consistent memory

access timing. Trusted Execution Environments [83] (TEE), such as Enclaves [20], Secure World [4],

and their high-level applications [57, 85, 93, 101], epitomize this, safeguarding against software

and hardware attacks and isolating sensitive data processing.

▶ UEM adopts a unified interface that abstracts interactions with different memory tiers, thus

decoupling from any specific physical implementations. To thoroughly validate its generality,

we conduct evaluations in typical scenarios of all three categories of heterogeneous memory

architectures mentioned above, with specific experimental settings detailed in Section 6.1.1.

2.2 Memory Security
Modern systems increasingly grapple with memory security, a critical aspect exacerbated by the

multitude of attack vectors, demanding a deeper understanding and enhanced protection.

Attack Vectors. Physical attacks pose a significant threat to memory security, involving direct

control or access to the target system. These include hardware disassembly, storage media theft,

or intercepting communications. In Infrastructure as a Service [62] (IaaS) contexts, hardware

suppliers and system administrators may pose risks due to potential data spying [23] and physical

device access. Multi-tenant hardware sharing scenarios also present vulnerabilities [96], enabling

unauthorizedmemory access. New attack vectors such as Spectre andMeltdown [38] breach security

to access other programs’ memory in such environments. The Rowhammer vulnerability [48]

exploits DRAM charge leakage, flipping memory bits to manipulate data and inject code. This

can reveal encrypted data’s side information [9], underlining the need for comprehensive security

techniques, especially in insecure memory hierarchies.

Security Attributes and Threats. UEM prioritizes three main aspects of data security: confiden-

tiality, integrity, and freshness. Confidentiality is crucial to keep information secret and private,

preventing unauthorized access. Memory security threats like Spectre and Meltdown represent

significant risks as they allow attackers to bypass security and access sensitive data such as pass-

words or personal profiles in memory. Integrity relates to maintaining the data’s consistency

and accuracy during storage, transmission, or processing. Attacks such as Rowhammer, which

can alter memory cell contents and cause data corruption, highlight the importance of integrity.

Freshness ensures that data is current and not superseded by outdated or expired information.

Rollback attacks, aiming to reset the system to a former state to disguise malicious activities as

legitimate, are a direct challenge to ensuring data freshness. These could involve reverting to a

previous login session to gain unauthorized access or compelling the system to repeatedly perform

a previous action to achieve excessive insights.

Security Defense Techniques. Defense strategies against unauthorized memory access can be

broadly categorized into proactive and reactive measures.

(I) Proactive Protection: this involves isolation techniques to prevent illegal memory actions.

Operating systems use memory isolation [6] to block cross-process access, but privilege vulnerabil-

ities remain a concern. Sandboxing methods [90] like NaCl [106], gVisor [60], and VC3 [84] limit

kernel interaction and verify addresses before access. StackGuard [22] and ProPolice [28] counter

stack overflow attacks, while Safe Linking [41] addresses heap overflows. Address Space Layout

Randomization [86] and Address Obfuscation [13] further enhance security by confusing attackers.
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(II) Reactive Protection: this includes methods that detect certain unauthorized access incidents.

Techniques like cryptographic algorithms [70] and AEAD are used to encrypt data and authenticate

messages [10], ensuring confidentiality and integrity. However, memory page verification mecha-

nisms have limited scope and can be circumvented by advanced attacks. Advanced protections like

Merkle trees [94] face difficulties in concurrent environments due to high storage and processing

requirements [8, 55, 109]. Additionally, technologies like TME [47], SGX [20], and TDX [18] provide

enhanced memory security, especially with dedicated hardware.

▶ UEM prioritizes reactive security measures like encryption and validation to safeguard data

in heterogeneous memory environments, which are inherently less controllable. Given the un-

predictability and strength of potential adversaries, including those with physical device access,

UEM adopts a cautious approach. Proactive measures are less feasible in such varied memory tiers

and are more prone to breaches. UEM conceals the layout of objects in these memory tiers from

potential attackers. It encrypts data upon writing and checks integrity and freshness during reading,

guarding against tampering and rollback attacks. We detail UEM’s threat model in Section 3.1, and

present its innovative security mechanisms that bolster performance in Sections 4.3 and 4.4.

2.3 Object-oriented Memory Management
Traditional page-based data access often leads to I/O amplification, as retrieving a small data

portion requires loading a complete page. To address this inefficiency, various studies propose

object-oriented memory management techniques such as AIFM [81], FlatFlash [1], and Project

PBerry [17]. These methods, while more complex due to the variability in object sizes, offer benefits

like detailed data lifecycle observation and enhanced Garbage Collection (GC) efficiency. Techniques

include reference counting [40], generational approaches [76], and dynamic address resolution [103],

enabling flexible data location management and supporting defragmentation. In this context, log-

structured memory management [39, 82, 104], treating memory as a sequential log, has gained

prominence. This approach allows for data duplication and relocation to minimize fragmentation.

It employs incremental GC, efficiently reclaiming memory and reducing GC-related lags. The

emergence of heterogeneousmemory architectures introduces complexities in coordinatingmultiple

memory tiers. Solutions like Mako [61] address interconnect bandwidth issues by offloading tasks

to remote memory, and MemLiner [99] optimizes GC and application process coordination, using

a priority-based algorithm to manage memory eviction. Additional research efforts are directed

towards enhancing prefetch techniques [49, 63] to further refine memory management.

▶ UEM supports memory access by exposing unified references to applications. It employs a

log-structured memory management scheme to achieve object-level allocation, in an encrypted

manner, with only the necessary meta-information to support security properties. The specifics of

this implementation are elaborated in Section 4.1.

3 UEM APPROACH
3.1 Threat Model
3.1.1 Targeted Scenarios. Within heterogeneous memory architectures, various memory tiers

are ingeniously interwoven to create a cohesive memory system that facilitates the execution

of applications. However, these architectures inherently possess asymmetry in security among

memory hierarchies. A security weakness in any tier poses a significant threat to the overall system’s

robustness. In this context, we assume that the execution of the application, especially the memory

for loading application processes, is secure, with UEM management processes integrated as part of

the application. Application owners might take necessary measures to ensure this confidence, such

as deploying the application on physically controllable or non-shared dedicated computing nodes,
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or implementing security barriers like TEEs. Our study focuses on the standard heterogeneous

memory model, thus not assuming any specific deployment forms, i.e., discussions on gaining such

trust for particular deployments are beyond this paper’s scope. To demonstrate the adaptability of

our proposal, we evaluate UEM atop three typical deployment instances of heterogeneous memory

aligned with the assumptions of asymmetric security, including TCP-based disaggregated memory,

DRAM-NVRAM hybrid deployment, and TEEs supported by Intel TDX. This is consistent with the

heterogeneous memory categorization investigated in Section 2.1, and a detailed description of

these instances is in Section 6.1.1.

3.1.2 Threat Agents. In the scenario described above, the identities of threat agents targeting

memory security can be diverse and difficult to pinpoint. This paper assumes that the adversary

is malicious. Firstly, in heterogeneous memory architectures, the primary purpose often includes

resilient resource allocation. This implies non-exclusive, shared resource consumption, enabling co-

tenants to potentially bypass isolation mechanisms or maliciously exploit system vulnerabilities for

unauthorized access. Secondly, the scope of threats may also extend to privileged entities abusing

their elevated access permissions. Complicated infrastructures typically require a substantial

number of specialized operational staff, making it challenging to fully prevent a few from becoming

corrupt or acting with malicious intent. Thirdly, particularly in the case of platforms exposed to the

public domain, there is a constant threat from unknown external forces that might infiltrate and

cause disruptions. For example, a hacker who successfully penetrates a routing node can effectively

monitor traffic. Lastly, in extreme situations, threats to memory security can be more fundamental,

such as physical intrusions into devices. This may involve eavesdropping on or hijacking device

interfaces, or even disassembling and stealing memory storage devices. We note that, regarding

data security in runtime memory, attacks can transcend mere data compromise by potentially

altering applications’ execution, such as modifying conditional branch criteria. Executing these

attacks effectively demands extensive knowledge of the targeted application.

3.1.3 Countermeasures. As outlined above, when the application interfaces with diverse memory

tiers via UEM, all tiers external to the application’s boundary are deemed untrusted, regardless

of their specific forms. Given the complex dynamics and unpredictable nature of threat agents,

it is imperative to consider the most extreme scenarios. Under such pessimistic assumptions, it

is imprudent to rely on any benign presuppositions about the untrusted environment, as we pre-

sume these facilities to be entirely compromised. Furthermore, the threat agents, distinguished

by their diverse origins and varying capabilities, are collectively represented in a uniform, potent

adversary model. That is, the adversaries are capable of fully controlling the untrusted memory

layers, including communication with the application, granting them unfettered and covert access

to and modification of data. In this demanding scenario, UEM aims to provide a resource-efficient

means to ensure data security, encompassing confidentiality, integrity, and freshness. For confi-

dentiality, UEM consistently applies robust encryption to data leaving the trusted environment,

preventing adversaries from deciphering any information from the untrusted domain. For integrity

and freshness, UEM detects any tampering with or rollback attempts on the data upon its retrieval.

In the event of unauthorized actions, UEM will issue an urgent exception alert to users. These

countermeasures ensure that even if heterogeneous memory tiers are fully breached, applications

built atop them can still operate stably through UEM, while maintaining memory security.

3.2 Rationales and Key Ideas
The foundational concept of unified memory is to provide developers with a seamless interface

to read and write data in different physical states, allowing for the transparent management

of heterogeneous memory hierarchies within application logic. This necessitates a mediating
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“interchange station,” which acts as a bridge between the seamless interface and the various physical

layers, managing tasks such as scheduling and transformation.

This paper focuses on object-oriented scenarios, emphasizing fine-grained memory management.

The “seamless interface” that UEM provides for accessing objects across heterogeneous memory

is a reference, i.e., UemRef. On the application end, ownership and access to data are determined

by holding instances of object references. UemRef is a kind of smart pointer, akin to unique_ptr,
encompassing metadata used by the so-called interchange station (i.e., UEM Manager), to derive a

valid raw address when access is imperative. This process is referred to as “dereferencing.”

Within this framework, the primary challenge lies in the additional costs associated with imple-

menting memory security measures. Specifically, in a heterogeneous memory architecture where

data is accessed and modified through UemRef, data remains confidential and unaltered when sched-

uled across different memory hierarchies. Conventional methods for maintaining confidentiality

and integrity typically perceive data objects as independent entities. For instance, the prevalent

AEAD method encrypts data, computes a data tag, and appends all relevant metadata to the ci-

phertext. This is useful and efficient when communication is distributed among numerous parties

without a central trusted entity to manage all required metadata for confidentiality and integrity, or

when each entity’s size is substantial, so the security mechanisms yield relatively minimal overhead

per data unit. However, if AEAD or similar strategies are directly applied to smaller objects, their

design is not optimal, because of the considerable overhead they add per data unit in terms of both

computation and storage. To mitigate this issue, we recognize the unique nature of UEM in its

associated context, where the managed objects serve as volatile data in runtime memory. Thus,

their decryptability aligns with the persistence of the corresponding process, eliminating the need

to understand its content outside the host process. This insight enables centralized protection of all

data with substantially reduced overhead.

To safeguard the integrity and freshness of data, UEM employs Aggregated Verification Sets

(AVS), a centralized design, to eliminate the need for maintaining individual tags for each object.

The validation of integrity and freshness is not performed with every object access but is asyn-

chronously recorded within AVS upon access. AVS contains one aggregated set for read operations

and another one for write operations. A routine check by a background task verifies AVS’s correct-
ness. Discrepancies between the sets indicate data tampering, while consistency suggests the data

remains untouched or has not been rolled back. This centralized strategy considerably diminishes

computational and storage complexities, which will be further discussed in Section 4.3.

To ensure confidentiality, UEM also devises a centralized data structure, called the Dynamic

Mask Pool (DMP) for data encryption. This method avoids the necessity of creating and storing

separate Initialization Vectors (IV) for each object. Similar to the idea of stream ciphers, the

encryption/decryption process involves a simple XOR calculation on the plaintext/ciphertext,

with a bit string, which is fetched from DMP and has the same length as the object. Therefore, the

algorithm stores only a mapping that links each object to its position within the DMP. A more

detailed explanation of this algorithm is provided in Section 4.4.

3.3 Architecture Overview
The architecture of UEM is illustrated in Fig. 2. UEM assumes applications access heterogeneous

memory within a “trusted environment,” depicted in light green in the diagram. In contrast, the

storage hierarchy of heterogeneous memory is considered risky. When an application constructs

an object in heterogeneous memory, it acquires a UEM reference through the UEM Manager’s

allocation interface. The UEM Manager maintains a local memory pool of a predetermined size

and manages resident objects utilizing a log-structured approach. Here, every new object acts as

an entry in an ongoing log, meaning each object gets appended at the end of the log. The log is

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.



Object-oriented Unified Encrypted Memory Management for Heterogeneous Memory Architectures 155:9

Application
UEM References

UEM Manager

…

Local Memory Pool
(log-structured)

Dereference Allocation

Verification Encryption
DMPAVS

Device Manager

Heterogeneous
Memory Tiers

Trusted
Environment

Risky
Environment

Swap In
Swap Out
Ciphertext
Plaintext

segment out object in

Fig. 2. The overview of UEM architecture.

divided into segments by a consistent size. When the successive appends to the log saturate the

local memory pool, the UEM Manager selects an inactive segment, which does not contain any

objects currently in use, to be evicted to free up space.

The pivotal operation within UEM is the dereference of UEM references. This requires the UEM
Manager to produce a valid raw pointer and ensure it is accessible within its scope. If the object

is still in the local memory pool during this process, its memory address is returned immediately.

Otherwise, the object must be retrieved from the remote location and then re-added to the log,

replicating the initial allocation.

UEM utilizes a unified interface to abstract interactions with memory tiers. Specifically, for each

memory tier, there is an instance referred to as the “Device Manager” that concretely implements

specific hardware interaction protocols. Upon the eviction of a log segment, its data is registered to

the Data Verification Module to record relevant digests and is subsequently encrypted. Afterward,

it is migrated to a heterogeneous memory tier through the Device Manager. Similarly, when an

object requires retrieval, it is fetched from the remote side by the Device Manager, decrypted by

the Data Encryption Module, integrated into the local memory pool in plaintext, and registered

within the Data Verification Module.

Periodically, the Data Verification Module performs asynchronous checks to ensure alignment

between incoming and outgoing data. Should any inconsistencies arise, a catastrophic exception will

be triggered, notifying the application of tampered memory data. In the absence of such anomalies,

the multifaceted process encompassing heterogeneous memory scheduling, data en/decryption,

and verification remains imperceptible to the application.

4 DESIGN AND IMPLEMENTATION
4.1 Abstractions and Interfaces
UEM is implemented in C++ and manages application data at the granularity of objects. UEM
provides the following interfaces for applications, with an example code snippet in Fig. 3.

4.1.1 Device Manager. To accommodate the diversity in memory hierarchies, UEM separates

the logic of security enforcement and object swapping for varying hardware through an ab-

straction termed DeviceManagerInterface. This abstraction offers three pivotal interfaces. allo-
cate_memory can be invoked to allocate a memory block of a specified size on the managed device,
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1 class DeviceManagerInterface {
2 public:
3 virtual void* allocate_memory(size_t size) = 0;
4 virtual void swap_in(uint64_t addr, size_t len, uint8_t *dest);
5 virtual void swap_out(uint64_t addr, size_t len, uint8_t *data);
6 };
7

8 class UemManager {
9 public:
10 UemManager(DeviceManager* dm, size_t local_size);
11 template <class T> UemRef<T> allocate();
12 };
13

14 void multiply(UemManager &uemm, UemRef<int> &product,
15 UemRef<int> &factor1, UemRef<int> &factor2) {
16 UemScope scope(uemm);
17 int* f1 = factor1.get(scope);
18 int* f2 = factor2.get(scope);
19 int* p = product.get(scope);
20 *p = (*f1) * (*f2);
21 // scope exits due to destruction
22 }

Fig. 3. Code snippet of UEM interfaces.

which is subsequently employed to store the swapped-out data. The Device Manager also extends

interfaces for both data swap_in and swap_out. To accommodate various heterogeneous memory

tiers, users are required to implement these interfaces. It serves as a driver for UEM, ensuring

alignment with the precise specifications of the hardware.

4.1.2 Memory Manager. Applications interact with the heterogeneous memory architecture utiliz-

ing UemManager. To allocate memory space, it is mandatory for an application to first instantiate a

UemManager instance in C++. Two major arguments are embedded in UemManager’s constructor.
The application, by the device manager implementation dm, determines the device to which the

data will be relocated if local memory reaches its capacity. Application developers are relieved

from the intricacies of divergent programming interfaces for different remote devices, except for

the initial creation of the device manager object with essential configurations, e.g., the physical

address of the device. The application also needs to delineate the size of the local memory pool

to properly initialize and manage swapping behaviors. Once UemManager is initiated, applications

can leverage it to allocate memory for varied object types. allocate<T>() serves the purpose of
allocating memory equal to the size of the object type represented by T within the UemManager.
Akin to smart pointers in C++, objects are automatically deallocated when they become obsolete.

4.1.3 Dereferencing and Scope. The dereferencing of the obtained raw address (i.e., a pointer) is

only temporarily valid, as its physical allocation is dynamically managed by UemManager. UEM
utilizes scopes to secure an object in the local memory, ensuring that the background processes

neither evict nor move it within the local memory pool during its active use. To dereference a

UemRef, it must be associated with a UemScope object, and the acquired pointer from the .get()
method is operable solely within the lifespan of UemScope. Departing from this scope requires

re-dereferencing. Failing to do so and using the obsolete pointer could result in undefined behaviors.

Such a mechanism is elucidated with a basic example function multiply. This function multiplies

two factors, stored in UemRef factor1 and factor2, and retains the result in product. Initially, a

UemScope is generated and bound with UemRef dereferencing, yielding the object’s pointer in the
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Fig. 4. An example of AVS with operations.

local memory pool. Consequently, the three pointers obtained via this scope binding preserve their

validity throughout their existence, irrespective of their read-write utility, such as in multiplication

calculations, until the encompassed UemScope instance is destructed at the function’s termination.

Though UEM offers the choice for programmers to pin desired objects in the local memory to allow

faster access, to prevent any impediment to the scheduling mechanism of UEM, developers should

precisely define the scope to avoid excessive pinning of UEM objects.

4.2 Object Swapping
UemManager employs the concept of log-structured memory [82] (LSM) to optimize the efficient

utilization of valuable local memory space. LSM subdivides the entire memory space into distinct

segments. When local memory consumption exceeds a predetermined threshold, UemManager
implements a FIFO policy to designate a segment and subsequently relocate objects from that

segment to managed devices. During the dereference procedure, if the pertinent object is located

remotely, UemManager allocates a new local space within LSM and liaises with the device manager

to transition the object—rather than the entire segment—back into the local memory. UemManager
also incorporates prefetching for specific data structures characterized by conventional memory

access patterns, such as sequential access in arrays. Before the commencement of the data swapping,

UemManager necessitates synchronization with both the Data Encryption Module and the Data

Verification Module to ensure that data is provided with adequate protection. Subsequently, the

protected data is dispatched to the device manager. Conversely, when an object is being swapped

in, UemManager receives encrypted data from the device manager. This then necessitates further

interactions with the Data Encryption Module and the Data Verification Module prior to the

restoration of the data to the application. This meticulous approach ensures the secure and efficient

management of memory spaces, enabling seamless transitions between local and remote memories

while maintaining the integrity and confidentiality of the data. The strategic employment of

prefetching and structured memory organization further enhances the effectiveness and operational

seamlessness of UemManager in managing memory spaces and data structures.

4.3 Data Verification Module
UEM enforces write-read consistent memory to ensure the data stored in the untrusted memory

is not tampered with. By definition, the memory is write-read consistent if, and only if, for every

read at the address 𝑎𝑑𝑑𝑟 , it returns the data most recently written at the same address 𝑎𝑑𝑑𝑟 .

4.3.1 Design of AVS. The design of AVS (aggregated verification sets) is inspired by Blum et al. [14],

who introduced an efficient way to verify if the memory is write-read consistent. AVS consists of
two primitives in the local memory—a set of all read operations (the read set, denoted as RS) and a
set of all write operations (the write set, denoted asWS). The observation is straightforward—if the
data is not tampered with, the two sets should be the same. To achieve this property, the following

additional rules should be enforced to ensure that for each write operation, there is exactly one

corresponding read operation, and vice versa: 1 After any read operation, a write operation on the

same address must be performed. 2 Before any data overwrite or update, a virtual read operation

on the same address must be performed.
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Algorithm 1 Data Verification Module

1: currentScanning = -1

2: ℎWS = ℎRS = ℎnewRS = ℎnewWS = 0 # Initialize sets

3: function processRead(addr, data)

4: if addr > currentScanning then
5: ℎRS = ℎRS ⊕ PRF(addr, data)

6: ℎWS = ℎWS ⊕ PRF(addr, data)

7: else
8: ℎnewRS = ℎnewRS ⊕ PRF(addr, data)

9: ℎnewWS = ℎnewWS ⊕ PRF(addr, data)

10: end if
11: end function
12: function processWrite(addr, oldData, newData)

13: if addr > currentScanning then
14: ℎRS = ℎRS ⊕ PRF(addr, oldData)

15: ℎWS = ℎWS ⊕ PRF(addr, oldData)

16: else
17: ℎnewRS = ℎnewRS ⊕ PRF(addr, oldData)

18: ℎnewWS = ℎnewWS ⊕ PRF(addr, newData)

19: end if
20: end function
21: function verification

22: for obj ∈ remoteObjects do
23: currentScanning = obj.addr

24: ℎRS = ℎRS ⊕ PRF(obj.addr, obj.data)

25: ℎnewWS = ℎnewWS ⊕ PRF(obj.addr, obj.data)

26: end for
27: if ℎRS ≠ ℎWS then
28: Raise("Verification fails!")

29: end if
30: currentScanning = -1

31: ℎRS = ℎnewRS
32: ℎWS = ℎnewWS # Flush values in new sets to current sets

33: ℎnewWS = 0

34: ℎnewRS = 0 # Clear new sets

35: end function

Fig. 4 shows an example of how AVS works. Initially, both sets are empty. We first insert 𝑑𝑎𝑡𝑎1
to the address 𝑎𝑑𝑑𝑟 , and insert a tuple (𝑎𝑑𝑑𝑟, 𝑑𝑎𝑡𝑎1) into WS. Next, we read the data at 𝑎𝑑𝑑𝑟 ,

and subsequently, insert (𝑎𝑑𝑑𝑟, 𝑑𝑎𝑡𝑎1) into RS. According to 1 above, a virtual write operation

is also performed, so that (𝑎𝑑𝑑𝑟, 𝑑𝑎𝑡𝑎1) is appended toWS. Next, for an update operation, with

2 above, we first read the original data and append (𝑎𝑑𝑑𝑟, 𝑑𝑎𝑡𝑎1) to RS, and then append the

updated data (𝑎𝑑𝑑𝑟, 𝑑𝑎𝑡𝑎2) to WS. Finally, for a remove operation, we append the corresponding

tuple (𝑎𝑑𝑑𝑟, 𝑑𝑎𝑡𝑎2) to RS. In the end, both RS and WS have two (𝑎𝑑𝑑𝑟, 𝑑𝑎𝑡𝑎1) tuples and one

(𝑎𝑑𝑑𝑟, 𝑑𝑎𝑡𝑎2) tuple, signifying untampered data.

4.3.2 Representation of AVS. Storing all the tuples in the sets, as shown in Fig. 4, is expensive

for large systems. An efficient way is to store the collision-resistant hashes of the sets, and the
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equivalence of sets can be evaluated by checking the equivalence of the hashes. The hashes of RS
and WS are defined as the XOR sum of the Pseudo-Random Functions (PRF) of all set elements:

ℎWS =
⊕

(𝑎𝑑𝑑𝑟,𝑑𝑎𝑡𝑎) ∈WS
𝑃𝑅𝐹 (𝑎𝑑𝑑𝑟, 𝑑𝑎𝑡𝑎)

ℎRS =
⊕

(𝑎𝑑𝑑𝑟,𝑑𝑎𝑡𝑎) ∈RS
𝑃𝑅𝐹 (𝑎𝑑𝑑𝑟, 𝑑𝑎𝑡𝑎)

It has been proven that RS = WS implies ℎRS = ℎWS , and ℎRS = ℎWS implies RS = WS, with
high probability 𝑝 , where 1 − 𝑝 is negligible [14]. Algorithm 1 shows the details of the process for

updating the two sets of AVS.

4.3.3 Pauseless Verification Process. In the example shown in Fig. 4, the two sets are consistent only

when the object is removed. Evidently, we do not want to wait until the program finishes and then

remove all data to perform the verification. Instead, during runtime, we perform a virtual remove

operation (i.e., adding the tuple to RS), check if the two sets are identical, and then perform a

virtual insert operation (i.e., adding the tuple toWS). Concerto [8] further introduces a method for

performing the verification without pausing the application, thereby ensuring that the write-read

consistent memory adds minimal performance overhead to the applications in runtime. When the

verification is in progress, the verifier records the object’s address that it is currently scanning

(the currentScanning variable in Algorithm 1). When a concurrent read or write request from

the application occurs, it checks whether the object has already been scanned in the current

verification iteration by comparing the address of the object against the cursor (lines 4 and 13). If

so, all updates will be performed on the new sets; otherwise, on the current sets. Upon completion

of the verification process, the data in the new sets will be flushed to the current sets, and the new

sets will be empty until the next verification process. While the pauseless verification process can

operate in the background without interrupting the application execution, it does not come for

free—memory scanning will incur considerable CPU and I/O resource consumption. To mitigate

this, prior studies such as FastVer [7] have proposed leveraging the hot-cold dichotomy in managed

memory to reduce the scanning scope. Nonetheless, such approaches do not tackle the problem

fundamentally, representing an ongoing research challenge.

4.4 Data Encryption Module
4.4.1 Generation of Masks and Mask Offsets. The Data Encryption Module of UEM uses an ap-

proximation of one-time pad (OTP), which is proven to have perfect secrecy [88]. When an object

needs to be swapped outside the trusted memory, 𝑛𝑚 masks/pads (𝑛𝑚 > 1) for this object with the

same size will be fetched from UEM’s DMP (dynamic mask pool) with the generated mask offsets.
DMP is a block of secure local memory with a configurable size of 𝑠 , containing random bytes that

are generated during the initialization of any applications running on top of UEM, and the mask

offset refers to the location of a specific mask in DMP. DMP is dynamic because: 1 The mask offsets

are generated dynamically during swapping and will not be reused. 2 The bit string in the pool is

dynamic in that it is refreshed periodically. During the swapping process for an object with size 𝑠 ,

the Data Encryption Module first generates 𝑛𝑚 distinct random numbers from 0 to 𝑠 − 1, which

will serve as the offsets in DMP. With the offsets, 𝑛𝑚 blocks of memory with the same size of the

object will be fetched from DMP as the masks and be used to perform encryption.

4.4.2 Encryption and Decryption. Fig. 5 shows an overview of how the plaintext pt is encrypted to
the ciphertext ct with 𝑛𝑚 = 3. First, we generate three random offsets and use them to retrieve

three masks, denoted as𝑚1,𝑚2, and𝑚3, from DMP. Then, we take the plaintext 𝑡0 as the input for the
first round. For each round, we process the input 𝑡𝑖−1 through the Rijndael S-box [80] to introduce

non-linearity, obtaining 𝑆 (𝑡𝑖−1). Next, an XOR operation is applied to 𝑆 (𝑡𝑖−1) with the mask𝑚𝑖 .
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Fig. 5. An overview of data encryption with 𝑛𝑚 = 3 masks.

This process continues until 𝑖 = 𝑛𝑚 , indicating that all 𝑛𝑚 rounds of substitution and padding are

complete. Finally, the metadata will be appended to the ciphertext before it is written to the remote

device, and will be used to look up the mask offsets for decryption. The metadata includes the ID

(or address) of the object, and the Data Encryption Module keeps a mapping from all object IDs to

the mask offsets. In Section 4.5, we explore how we refine this design to substantially decrease the

storage usage for mapping data.

4.4.3 Security Enforcement. To ensure the confidentiality of data, the Data Encryption Module

employs specific design strategies as follows.

Multiple masks with secret offsets. We employ 𝑛𝑚 > 1 masks to encrypt the data through

multiple rounds. This is done to prevent potential overlap or collision of mask segments in DMP,
which might be exploited by adversaries. Moreover, the mask offsets in DMP are not written to the

untrusted device, so adversaries will not learn any information about the relative position of the

masks of two objects in DMP. Consequently, even in cases where mask values intersect, adversaries

would remain oblivious to such overlaps. A detailed exploration of the implications of these values

on the security robustness of UEM is presented in Section 5.1.

DMP rotation. UEM employs DMP rotations to prevent long-term mask collisions. Periodically, we

refresh the entire DMP with freshly generated random bytes, and subsequently, data on the remote

device is encrypted using these newmasks. This process is co-designed with the verification process

and achieves slight performance overhead. More details are provided in Section 4.5.

One-off masks. The masks employed for encrypting an object are single-use and are discarded

once the decryption process is completed. In the event that the same object needs to be transferred

to an untrusted device again, new masks will be generated. This approach ensures that potential

adversaries cannot glean comparative information about different instances of the same object.

4.5 Optimizations
4.5.1 Grouped Mask Management. When a remote object needs to be swapped in, the masks (or

the mask offsets) are needed for decryption. On the one hand, storing offsets in untrusted memory

leads to security issues. On the other hand, local storage incurs significant storage overhead on the

limited trusted memory, a typically constrained resource. To reduce this overhead while maintaining

security, we enhance the basic mask offset generation process described in Section 4.4.1 with the

following upgraded methodology.

The core idea of the new approach is to group multiple objects and store only one mapping for

each group. Meanwhile, we still need to keep the mapping invisible from the untrusted device.

Hence, even if in the rare case two offsets collide, adversaries learn nothing about it. To achieve this,

we introduce an indirect mapping from objects to an array of mask offsets. First, for each object, we

allocate a (group_id, group_index) tuple, where group_index refers to the index of the object within

the group. We store this tuple in untrusted memory with the object. In trusted memory, we only

keep a mapping from group_id to the mask offsets, and compute the offsets for the objects with the
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Algorithm 2 Group Allocation Process for Objects

1: nextGroup = 0

2: categories = [16, 32, 64, 128, ...]

3: maxContMask = 65536 # The maximum continuous mask size

4: curGroup = dict() # category -> (group ID, group size)

5: function init

6: for c in categories do
7: curGroup[c].id = -1

8: curGroup[c].size = max(1, maxContMask / c)

9: end for
10: end function
11: function getSizeCategory(size)

12: for c in categories do
13: if size ≤ c then
14: return c

15: end if
16: end for
17: end function
18: function allocateTuple(size)

19: c = getSizeCategory(size)

20: if curGroup[c].size * c ≥ maxContMask then
21: # Allocate new group id

22: newGroup = nextGroup

23: nextGroup = nextGroup + 1

24: curGroup[c].id = newGroup

25: curGroup[c].size = 1

26: return (newGroup, 0)

27: else
28: # Use existing group

29: groupId = curGroup[c].id

30: groupOffset = curGroup[c].size

31: curGroup[c].size = curGroup[c].size + 1

32: return (groupId, groupOffset)

33: end if
34: end function

same group_id. Algorithm 2 shows how we allocate the (group_id, group_index) tuple for an object.

To reduce the probability of mask collision or overlapping, we set a maximum continuous mask

size for each group, denoted as maxContMask. A group grows until the masks in the group reach

this size limit. By design, objects with similar sizes will fall into the same group. The algorithm

first checks which size category the object falls into with the getSizeCategory function. Next, it

checks if there is any available group of this size category that is not full (line 20). If so, the object

gets the group ID of this group with the next available position in this group as its group index.

Otherwise, a new group corresponding to this size category will be created. If the mask offset for

(group_id, 0) is denoted as 𝑘 , the corresponding offset for (group_id, i) is calculated as 𝑘 + 𝑖 ∗ 𝑐 ,
where 𝑐 represents the object’s size category.

We note that the grouping mechanism does not compromise security. First, objects are still

encrypted with multiple masks, and a group ID will map to an array that includes all mask offsets.
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Second, by design, mask offsets for objects in the same group do not overlap, since the interval

between mask offsets for objects is equal to the size category, which is not smaller than any object.

Third, the group-based masks are also one-off—once an object is retrieved and decrypted using

its group_id and group_index, these metadata are no longer used. The retrieved object is treated

as newly allocated in the local memory pool and will be re-attempted for group allocation. Upon

eviction from the local memory pool to the untrusted tier, it is re-encrypted according to its newly

allocated group. That is, consistent with the one-off mask principle, group allocation for an object

correlates with its eviction from the local memory pool. Re-allocating groups and group indices for

objects may result in “holes” in a group. Compaction is integrated into the DMP rotation process.

Objects will be migrated to new groups if necessary, before they are encrypted with new masks

and written to the remote memory. The mapping from group_id to the mask offsets will be stored

in the local memory. Compared to the method of retaining mappings for each individual object,

the overhead is much smaller. For instance, for objects with a size of 64 bytes, UEM only has to

store one mapping for every 1024 objects, resulting in an overhead that is merely one-thousandth

compared to a strawman solution.

4.5.2 Space Elimination for Timestamps. Rollback attacks are a well-known technique that can

potentially bypass the integrity verification system. In such attacks, adversaries capture a copy

of the data generated by the system, successfully passing the integrity verification. Subsequently,

adversaries replace the current data with a previously obtained version. Without proper design

considerations, a systemmight remain oblivious to this tampering, as the altered data still possesses a

valid MAC or PRF output. To protect against rollback attacks, conventional systems [7, 8, 67, 72, 109]

typically rely on a timestamp or an equivalent to ensure the freshness of the data. Storing an extra

timestamp for each object is relatively inexpensive in some systems where swapping occurs on

a page level [67, 72, 109], but it leads to significant relative storage overhead for UEM, which

optimizes for objects smaller than pages. Recall that in the Data Encryption Module, all masks for

encryption and decryption are strictly for one-time use. Once the decryption process is completed,

the mask offset is discarded, and a new mask is employed when the object is swapped out again.

Consequently, even for two pieces of the same ciphertext, since the mask has been changed, they

will be decrypted into a different plaintext, leading to inconsistencies between RS and WS.
Therefore, UEM collaboratively designs the Data Verification Module and the Data Encryption

Module, eliminating the need for a timestamp.

4.5.3 Batch Verification. The verification process can be made more efficient through batch verifi-

cation. As a reminder, LSM divides the memory space into segments with a default size of 1MB.

During the verification process, instead of processing one remote object at a time, UEM fetches the

entire segment and processes the objects in that segment locally. With batch verification, we reduce

the number of remote memory accesses and improve the performance. We assess the efficacy of

batch verification in Section 6.2.3.

4.5.4 Efficient DMP Rotation. Recall that during the verification process, we read objects from

remote memory, perform a virtual remove operation (i.e., update RS), check set equivalence, and

then perform a virtual insert operation (i.e., update the new WS). At this stage, if DMP rotation
is configured to take place, a new DMP is generated before processing the first remote object. The

verifier reads the remote data, decrypts it with the mask in the old DMP, and appends the information

to RS. Then, it generates the mask offsets for the same object from the new DMP, encrypts the
data with the new mask, and writes it back to remote memory. The verifier also updates WS
accordingly. After all the objects are processed, all remote objects will be encrypted with the mask

in the new DMP, and the old DMP will be discarded.
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5 SECURITY DISCUSSIONS
5.1 Encryption Strength
The confidentiality of UEM is achieved by DMP, an approximation of OTP. OTP is proven to have

perfect secrecy, but it requires the key (mask) to be the same length as the plaintext, and the

key must be randomly generated every time and never reused, making OTP overly expensive for

fine-grained objects. DMP approximates OTP with two important parameters—the size of DMP 𝑠 and
the number of masks 𝑛𝑚 . Additionally, the maximum size of the object |𝑜𝑏 𝑗 |, and the number of

objects 𝑛𝑜 , are also considered.

Setup and Notations. Consider a set of objects, O = {𝑜1, · · · , 𝑜𝑛𝑜 }. Each object 𝑜𝑖 is encrypted

with 𝑛𝑚 masks, M𝑖 = {𝑚𝑖,1, · · · ,𝑚𝑖,𝑛𝑚 }. Let the offsets of the masks M𝑖 be the keys, denoted by

K𝑖 = {𝑘𝑖,1, · · · , 𝑘𝑖,𝑛𝑚 }. DefineK𝑖 (1) as the first element inK𝑖 , andK𝑖 (2) as the second element, and

so forth. Consider two objects 𝑜𝑖 and 𝑜 𝑗 , along with their masks and keys. Let Δ𝑖, 𝑗,𝑙 = K𝑗 (𝑙) −K𝑖 (𝑙),
where 1 ≤ 𝑙 ≤ 𝑛𝑚 . In the contexts where only two objects 𝑜𝑖 and 𝑜 𝑗 are considered, we omit 𝑖 and 𝑗

and use Δ𝑙 to represent Δ𝑖, 𝑗,𝑙 . Particularly, we assume that 𝑠 is much larger than |𝑜𝑏 𝑗 |; otherwise,
the traditional OTP generation for large objects is preferable.

The Adversary’s Advantages. Consider two objects 𝑜𝑖 , 𝑜 𝑗 ∈ O. The adversary gains an advantage

if and only if all Δ𝑖 (1 ≤ 𝑖 ≤ 𝑛𝑚) are equal, and −|𝑜𝑏 𝑗 | < Δ𝑖 < |𝑜𝑏 𝑗 |. In such a case, a segment of 𝑜𝑖
and a segment of 𝑜 𝑗 will be encrypted using the exactly same sequence of masks. Consequently,

an attacker might deduce information from this (e.g., if two plaintext messages share the same

segment and are encrypted with the same sequence of masks, then the corresponding ciphertexts

will also share an identical segment). In other scenarios, due to the randomness of the masks and

the non-linear property provided by substitution, no information will be leaked. Drawing a parallel

to the birthday problem [45], the probability that for any two objects, the final masks encrypting

them do not overlap is 𝑝𝑛𝑜−𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ≥ Π𝑖∈[1,𝑛𝑜−1] (1−
(2 |𝑜𝑏 𝑗 |+1)𝑖

𝑠 · (𝑠−1) ·· · (𝑠−𝑛𝑚+1) ) > (1− (2 |𝑜𝑏 𝑗 |+1) (𝑛𝑜−1)
𝑠 · (𝑠−1) ·· · (𝑠−𝑛𝑚+1) )

𝑛𝑜−1
.

Using the limit lim𝑥→0 (1−𝑥)1/𝑥 = 1/𝑒 , it is further estimated as 𝑝𝑛𝑜−𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ≃ 𝑒
−(2|𝑜𝑏 𝑗 |+1) (𝑛𝑜 −1)2
𝑠 · (𝑠−1) ·· · (𝑠−𝑛𝑚+1) . Since

𝑠 is much larger than 𝑛𝑚 , we have 𝑝𝑛𝑜−𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ≃ 𝑒
−(2|𝑜𝑏 𝑗 |+1) (𝑛𝑜 −1)2

𝑠𝑛𝑚 . As a reference, in a scenario where

𝑠 = 2
27
, 𝑛𝑜 = 2

30
, 𝑛𝑚 = 5, and |𝑜𝑏 𝑗 | = 64, the probability of any overlap occurring, based on Taylor

expansion, is approximately 1 − 𝑒−2
−68

< 2
−68

, which is negligibly small.

Parameter Selection. From the analysis, it is clear that 𝑠 and 𝑛𝑚 are crucial in determining the

adversary’s edge against DMP. To enhance security, users may opt for larger values of 𝑠 and 𝑛𝑚 ,

though this increases memory usage and encryption delay, respectively. UEM provides interfaces

for users to customize these parameters.

5.2 Verification Reliability
The Data Verification Module (AVS) of UEM employs cryptographic strength and computational

difficulty to thwart adversaries. By incorporating a potent Pseudo-Random Function (PRF) along

with a hash function resistant to collisions, it significantly challenges the feasibility of attacks, thus

ensuring data integrity and freshness.

Write-Read Consistency. The concept of write-read consistent memory, which AVS incorporates,

originates from Blum et al. [14] and has been subsequently adopted by the database sector in systems

such as Concerto [8] and VeriDB [109]. Blum et al. demonstrated that if any data has been tampered

with, the write set and read set must be inconsistent. UEM guarantees write-read consistency by

keeping AVS in the trusted local memory and always updating the sets when interacting with the

remote memory. UEM periodically checks that the read set RS and write set WS correspond to
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each other, indicating the non-existence of fabricated or stale data. Alterations will cause RS-WS
mismatches, triggering alerts and making sustained undetected attacks virtually impossible.

Continuous Collision Resistance. To avoid storing all elements of the two sets, a collision-

resistant hash function is employed over both sets. The hash functionmust ensure that ifWS ≠ RS,
then ℎWS ≠ ℎRS with high probability. Blum et al. [14] prove that given a collision-resistant hash

function 𝐻 (·) for set elements, the construction of set hash ℎS =
⊕

𝑠∈S 𝐻 (𝑠) is also collision-

resistant. With this approach, if the hash function returns 𝑘 bits, the design of write-read consistent

sets detects errors with a probability 𝑝 ≥ 1 − 1/2𝑘 . Arasu et al. [8] further show that the hash

function 𝐻 (·) could be replaced by a pseudorandom function, which is indistinguishable from

random, to improve performance while maintaining the same security properties. UEM assumes

that the employed PRF is both unpredictable and indistinguishable from random, reflecting a

common choice in the security domain.

5.3 Limitations
First, as mentioned in Section 3.1, applications are responsible for ensuring their own local memory

safety. It is important to note that this assumption of trustworthiness may extend to situations

such as core dumps, where stored memory snapshots are sensitive and susceptible to attacks from

adversaries who might exploit compromised memory tiers. Consequently, users are also responsible

for securely handling dump files, including their generation, storage, or ensuring that settings like

disabling core dumps are tamper-proof. Second, access patterns raised by UEM are non-oblivious

due to the untrusted nature of interacting with heterogeneous memory. When consecutive objects

are accessed, adversaries may discern the orders, locations, and bit lengths. However, the exposure

of orders is confined to the initial access for multiple accesses to a single object, and discerning

between reads or writes is unattainable. If heightened security is desired, one could integrate certain

oblivious memory techniques [91, 102] on top of UEM. Third, the fundamental philosophy of UEM
revolves around tackling encryption and verification using a centralized approach, ensuring optimal

efficiency in handling fine-grained, object-level memory access. This implies that managed objects

are exclusively accessible by a singular instance of the UEM manager, and are not conducive to

extension into multi-instance or distributed scenarios, e.g., cross-process communication via shared

memory, or emerging architectures like near-memory computing or Processing-In-Memory (PIM)

configurations. Fourth, UEM emphasizes detecting data tampering but does not offer recovery

solutions. If untrusted heterogeneous storage ceases to operate, it is akin to experiencing a power

outage in terms of application data loss. We note that UEM manages runtime memory, instead

of storage, meaning that the data should inherently be considered volatile. Hence, UEM cannot

prevent Denial-of-Service (DoS) attacks. Lastly, the detection mechanism employed by UEM is

asynchronous, making it unsuitable for applications (e.g., ATM) that cannot tolerate a verification

delay. However, in most cases, adversaries cannot deliberately influence the application in the

way they want via tampering since they are unable to create ciphertext that decrypts to be what

they desire. Tampering detection acts more as a deterrence against adversaries and is sufficient

for a wide range of scenarios, as any detection of violations would be a formal proof against

adversaries, leading to a loss of reputation or lawsuits. In fact, this model has also been used in

many studies [7, 8, 109].

6 EVALUATION
6.1 Experimental Setup
6.1.1 Evaluated Heterogeneous Memory Architectures. We evaluateUEM on three distinct platforms

chosen to provide a comprehensive demonstration of the versatility of our design.
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Table 1. Hardware Configurations for Each Testbed
CPU Remarks

TCP Intel E5-2640v4 Mellanox ConnectX-4

2 x 10 cores, 2.4 GHz 25 GB NICs

NVM Intel Xeon Gold 6326 Intel Optane Persistent

2 x 32 cores, 2.9 GHz 8 x 128GB DCPMM

TDX Intel Xeon Platinum 8438C TDX 2.0 enabled VM

2 x 48 cores, 2.6 GHz with 16 vCores

• TCP: A network-attached remote memory solution designed to provide applications with seam-

less execution, mimicking the experience of running on a single machine with abundant and

dynamically adjustable memory. However, both its communication links and remote storage

facilities are less controllable compared to local memory, and its centralized and shared nature

amplifies the intricacy and severity of memory security vulnerabilities.

• NVM: As an emerging form of memory that offers greater storage density and lower cost per unit

compared to DRAM, a DRAM-NVM hybrid can effectively increase the overall memory capacity

of a single machine. Still, NVM is less secure than DRAM because its non-volatile nature increases

the potential for physical data attacks, such as forced disassembly, theft, and interpretation.

• TDX: Intel Trust Domain Extensions is a cutting-edge TEE solution available in the market.

It can be viewed as a virtualization technology enhancement, ensuring that the entire virtual

machine operates within a hardware-enforced security perimeter. Conversely, if a heterogeneous

memory architecture breaches the VM barriers, external memory cannot benefit from TEE

hardware protection, rendering it vulnerable to the OS or adversaries who may exploit escalation

vulnerabilities to gain privileges.

6.1.2 Hardware Environment. To assess the three heterogeneous memory architectures discussed

above, we establish three corresponding testbeds, as detailed in Table 1. Specifically, for TCP
evaluations, we utilize UEM atop Shenango [73], an adept kernel-bypassing scheduler and network

stack. We deploy it on the xl170 machines from Cloudlab [27] for experiments. For NVM and

TDX assessments, we use self-purchased machines, where UEM is built directly on the Linux kernel

scheduler and network stack. This deviation arises from Shenango’s tailored drivers for specific

hardware, which are incompatible with our NVM and TDX machines. We note that for a particular

testbed, the software stack keeps consistent.

6.1.3 Evaluated Workloads. In addition to varying hardware configurations, we also evaluate UEM
with three different kinds of workload to demonstrate its generality as follows.

• Graph Processing: Our study utilizes the Wikipedia network of top categories sourced from the

SNAP dataset [54]. This graph encompasses approximately 1.8M nodes and 28.5M edges and is

fully connected. Our evaluation of UEM’s performance focuses on concurrent BFS with variable

sizes of local memory.

• Key-Value Queries: We utilize traces of Twitter’s requests as presented in [105]. Given that

UEM’s design is intended to address the I/O amplification challenges with small objects, we

standardize the key and value sizes to 50 bytes for both workloads. Our choice for the key-value

store system is an in-memory hopscotch hash table implementation. We center our analysis

on two distinct workloads: 1 Cluster 35: Characterized as a read-intensive uniform access

workload, it comprises 96% of GET requests and 4% of SET requests. This workload demonstrates

a uniform access pattern (Zipf factor = 0). 2 Cluster 48: This workload offers a more balanced
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Fig. 6. Storage overhead comparison between UEM & AEAD.

read-write distribution, with 65% of GET requests and 35% of SET requests. Additionally, it

manifests a more skewed access pattern (Zipf factor = 0.8191).

• Relational Tabular Analysis: We incorporate DataFrame [69], an in-memory data analysis

framework mirroring the Pandas [66] interface, on UEM. Our performance tests revolve around

three salient queries from TPC-H [21]: 1 Q1 involves scanning and filtering the lineitem table

and performing extensive computations. 2 Q6, similar to Q1, also scans and filters the lineitem
table, culminating in a summation of the values from qualifying rows. 3 Q17 is distinguished by

a join operation between the part and lineitem tables. The merge join, which requires sorting

the join attribute, serves as the joining mechanism. This results in increased computational

demand and requires multiple memory access rounds, especially when compared to Q1 and Q6.

6.1.4 Baselines. To our knowledge, UEM stands as the pioneering effort in delving into memory

safety attributes within the realm of object-oriented heterogeneous memory management. As

such, there are currently no direct competitors in this field. To evaluate UEM, we first involve

AIFM [81] as a baseline, representing the state-of-the-art object-oriented disaggregated memory

framework without considering data security. Furthermore, we implement AEAD-based encryption

and verification upon AIFM, termed AEAD, as a baseline of naïve memory security mechanisms.

6.2 Mircobenchmarks
6.2.1 Storage Overhead. Fig. 6 compares the extra space (in addition to the objects themselves)

occupied in both the local memory and the remote device, among UEM, AEAD, and non-optimized

UEM (disabling grouped mask and timestamp elimination proposed in Sections 4.5.1 and 4.5.2).

The reference line of payload size assumes an average size of 16 bytes per object. In terms of local

memory storage, UEM demands approximately an additional 160 MB for around 4 billion objects.

A significant portion of this space, 128 MB, is allocated to DMP. The remaining space is dedicated

to storing mappings from group IDs to mask offsets. Notably, the incremental growth of required

extra storage in UEM is gradual with the surge in the number of objects. This slow growth is

attributed to the fact that many objects are categorized into the same group, necessitating the

storage of merely a single mapping for each group. Conversely, the storage overhead of AEAD and

non-optimized UEM is much larger. AEAD and non-optimized UEM have to store timestamps in

both local and remote memory to guarantee data freshness. Further, non-optimized UEM, without

grouping, needs to store the mapping from the object ids to mask offsets for every object in local

memory. Clearly, the AEAD scheme incurs a storage overhead matching its effective data payload

in the local memory. This substantially deviates from the primary objectives of most heterogeneous

memory configurations, rendering AEAD-style methods impractical for such scenarios. In terms
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of remote device storage overhead, UEM’s footprint is merely 8% of that demanded by AEAD.

Specifically, UEM only retains the group ID and offsets, while AEAD requires storage for IVs, MACs,

and timestamps for each object, individually.

6.2.2 Performance Overhead Breakdown. Regarding 64-byte object swapping, we illustrate the

detailed breakdown of performance overhead between various modules of UEM in terms of CPU

cycles, in Fig. 7. We compare the results of UEM (the three-segment bars on the left) against AEAD
(the two-segment bars on the right) as the strawman solution. Overall, UEM outperforms AEAD on

all devices for both swap-in and swap-out operations.

On TCP, data swapping takes the majority of the time, approximately 88.2% for swap-out

operations and 90.2% for swap-in operations. Regarding the modules introduced by UEM, the Data

Verification Module accounts for 8.0% and 7.3% of the time for swap-out and swap-in, respectively.

The primary source of this overhead is the computational process linked with the Poly-1305 [12]

MAC (or PRF). The Data Encryption Module only consumes 2.5% of the cost for swap-in operations.

The cost is slightly higher in swap-out operations, around 3.7%. The additional cost arises from the

group allocation process for objects and the mapping management from object groups to mask

offsets. AEAD introduces 6.3x overhead compared to UEM on swap-out and 3.3x overhead on

swap-in for its security enforcement. The overhead results from the cryptographic computations

and timestamp management for freshness. Notably, the swapping procedure of AEAD consumes

more cycles than UEM since AEAD needs to swap a larger amount of data.

OnNVM, since the data-swapping process becomes faster than that on TCP, the relative overhead
of security enforcement of bothUEM andAEAD becomes more significant. The time spent onUEM’s

Data Encryption and Verification Modules accounts for 57.5% and 46.5% of the entire swapping

process for swap-out and swap-in, respectively. However, it is still much faster than the strawman

solution. In fact, the advantage of UEM against AEAD is more pronounced when data swapping is

less prominent. AEAD is 171.7% slower than UEM for swap-out and 55% slower for swap-in.

OnTDX, since the data swapping overhead becomesmuch larger, the relative overhead introduced

by UEM becomes negligible. However, it still maintains a noticeable advantage over AEAD since it

swaps a smaller amount of data.

6.2.3 Verification Latency. This subsection assesses the duration required to verify memory in-

tegrity and the efficacy of the proposed optimizations. Table 2 presents the latency for UEM’s Data

Verification Module when operating on NVM, measured per 1GB data. UEM specializes in exam-

ining objects sourced from potentially compromised, untrusted memory tiers. The latency varies

between 2.59s and 7.48s, contingent on object sizes. Implementing batch verification (Section 4.5.3)

contributes to performance enhancement, yielding a 2% to 14% improvement. Notably, the through-

put for smaller objects is comparatively lower due to the increased number of objects, necessitating

more MAC (or PRF) computations. Further, we explore the synergistic benefits of integrating DMP
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Table 2. Verification Latency for Every 1GB Data
Object Size 16B 32B 64B 128B

Enable Batching (s) 7.36 4.49 3.06 2.27

Disable Batching (s) 7.48 4.99 3.35 2.59

Table 3. DMP Rotation Latency for Every 1GB Data
Object Size 16B 32B 64B 128B

Combined Process (s) 9.06 6.17 4.41 3.74

Separate Processes (s) 11.69 7.50 5.32 4.33
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Fig. 8. Performance comparison between UEM and baselines on graph processing workloads.

rotation into the verification process (Section 4.5.4), with findings detailed in Table 3. Executed

independently, the dual processes, for each 1GB data, incur a cumulative duration of 11.69s for

16-byte objects and 4.33s for 128-byte objects. However, amalgamating these procedures reduces

the latencies to 9.06s and 3.74s, respectively. This efficiency gain is attributed to the need for only a

single retrieval of data from remote memory. We note that the operation of the Data Verification

Module is an asynchronous process running in the background, parallel to the application, and

does not block its memory access behaviors.

6.3 Evaluation on Graph Processing
We first evaluate UEM on graph processing workloads, which often include a random memory

access pattern. We compare our method with AIFM, the baseline without security enforcement,

and the strawman AEAD approach. Fig. 8 shows the results on different devices with varying
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Fig. 9. Performance comparison between UEM and baselines on key-value queries.

local memory sizes. In most scenarios, the throughput of task processing increases when the local

memory size increases. When the local memory size reaches 100% of the data size, all data can fit

into the local memory, and there will be no differences among UEM, AIFM, and AEAD.

On all three devices, UEM introduces a small overhead for both graph loading and BFS. On

TCP, UEM’s overhead is about 70% of what AEAD brings. On NVM, the advantage of UEM against

AEAD becomes larger, because the data swapping process on NVM is faster. This matches the

observations we have in the microbenchmarks. On TDX, since the data swapping process makes up

most of the cost, we do not observe a significant difference among the three approaches. In other

words, the overhead introduced by UEM’s security enforcement is negligible. We also configure our

experiments with different numbers of threads, and the results show that the observations above

hold regardless of the thread numbers. An intriguing observation specific to NVM is that AEAD
occasionally underperforms as the local memory expands. This is due to NVM’s cache-coherence

property, implying that data transfers between DRAM and NVM could bypass the actual movement

between tiers and instead take place within the CPU cache. We discern this phenomenon to be

accentuated when the local memory pool is constrained, during traversal of real-world graphs.

We retain the original results without altering the code to optimize the hit rate for this particular

circumstance, for a consistent comparison.

6.4 Evaluation on Key-ValueQueries
Fig. 9 shows the results on key-value queries. We observe that UEM introduces a relatively small

overhead in all the settings. The relative overhead compared to the insecure baseline is up to 21.7%.

UEM also beats AEAD in most scenarios. Similar to the graph processing workloads, the advantage

of UEM over AEAD is higher on NVM, where the data swapping process is faster. Besides, the

relative speedup for UEM over AEAD is higher in Cluster 48 than in Cluster 35. This is because

Cluster 48 involves more set operations, while Cluster 35 has more get operations. As we observe

in microbenchmarks, UEM has a more prominent advantage over AEAD in swap-out than in

swap-in. Regarding performance on TDX, since data swapping is much slower and dominates the

cost, UEM’s security features have a negligible impact on overall performance.

6.5 Evaluation on Relational Tabular Analysis
Fig. 10 shows the performance on TPC-Hworkloads.UEM introduces reasonable overhead compared

to the insecure baseline. The exact overhead depends on the specific workload. For computation-

intensive workloads, such as Q17 that involves join operations on large tables, the overhead of
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Fig. 10. Performance comparison between UEM and baselines on relational tabular analysis workloads.

UEM is small, up to 20k rows/s compared to AIFM. Most of the cost comes from the sort operator

that the merge-join requires, and the difference in remote memory access does not play a crucial

role in this query. On the contrary, for queries like Q1 and Q6, where table scanning makes up

most of the query plan, the overhead of UEM becomes larger. Compared to AEAD, UEM is superior

in most cases. Overall, UEM excels in handling both random access workloads, including graph

processing, key-value queries, and table joins (Q17), as well as sequential access scenarios, such as

relational tabular analysis with an emphasis on scanning (Q1 and Q6).

7 CONCLUSION
In this paper, we proposeUEM, a novel approach for object-orientedmemorymanagement in diverse

architectures. UEM enhances security via centralized data structures, ensuring slight computational

and storage overhead. Our evaluations show that UEM performs consistently well across various

devices and workloads, with a performance overhead below 20% in most cases compared to a

baseline without considering security. In particular, UEM stands out as a pioneering study to enable

memory security in heterogeneous memory, bridging a notable research gap. We believe that the

slight performance loss is worth the enhanced data security UEM brings.
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